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fherefore: the error of approximation in the Simpson’s rule becomes
R, =_ (b _ a)s iv hs . .
2T sy L M=ot (5.77)

when =3, the corresponding integration method js called 3/8th

. . Sim S ’ .
ihe integration method (5.70) with w(x) = 1 for n < 6 are Fiven pson’s rule. The weights 4, of

m &7

Table 5.2. Weights of Newton-Cotes Integration Rule

n\A Ao Ay Ay As A, As Ag
" 112 112
9 1/3 - 4/3 1/3
3 3/8 9/8 0/8 3/8
4 14/45 64/45 24/45 - 64/45 14/45
5 05/288 _ 375/288 250/288 250/288 375/288 95/288
B 6 41/140 216/140 " 27/140 272/140 271140 216/140  41/140

Usually, for larger values of n, we get better approximation. However, for large n(n > 8, n # 9)  some
of the weights become negative. This may cause loss of significant digits in the result, because of
mutual cancellation-—For-this Teason, higher order Newton-Cotes formulas are not commonly used.

The methods of the form (5.70) include the end points x, and x, as abscissas. Such methods are
also called closed-type methods.

The methods which do not include the end points as abscissas are often called open-type methods.

Open Type Integration Rules
We replace f(x) in (5.59) by the Lagrange interpolating polynomial fitting the n — 1 data points (x;, f;),

k = 1(1)n — 1 and integrate between the given limits. Some of the open-type integration methods
(w(x) = 1) together with the associated errors are listed below. The nodes are equispaced
with h = (b — a) /n and xy = a, x,, = b.
(i) Mid-point rule (n = 2), x, = a, xy + h, xo + 2h = b,
b 3
[ 70 dx =2mfxg + 1) + h? FE). - (5.78)
‘a-__’_’_’d_,_____—-

(i) Two-point rule (n = 3), x, = a, xy + h, xy + 2h, xy + 3h = b.

: 3h PP (P
j £ dr = S o+ W)+ flro + 2] + 5 B £ (579)

(iii) Three-point rule (n = 4), x, = a, xy ¥ h, xo + 2h, xy + 3h, xo + 4h = b

J~b. f(x) dx = % [2f(xg + 1) = f(xg + 2h) + 2f(xy + 3h))

5
+ 14h fw(€3)- (5.80)

45
where a < &, &,, & < b.
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Example 5.11 Find the approximate value of

J" dx
1=[—
ol+x
. . t ; AT l]--(...."l.'.

using (i) trapezoidal rule, and (ii) Simpson’s rule. Obtain @ bound for the €rrors Ihe exact value of

[ = 1n2 = 0.693147 correct O six decimal places.

Using the trapezoidal rule, we have

I = _l-(l.}—_—l-) = 0.75.
2 2

Error = 0.75 ~ 0.693147 = 0.056853.
The error in the trapezoidal rule is given by
(b-a)’ ”(x S—L max 2 _|<1
IRIISTOIE?)é]'f (’\)| 12()SXS| (l+x)3 —6-

Using the Simpson’s rule, we have

[ = _!_(]+_§_+_1_)_____2§, — 0.694444.
6 3 2 36

Error = 0.694444 — 0.693147 = 0.001297.

The error in the Simpson’s rule is given by

b—ay v 1 24
|R | < _(____,___- iv < _
i 2880 e EA | 2880 o rsl 1+ x)° 0.0033%

We note that in both cases, the actual error is much smaller than the error bounds obtained from

theoretical considerations.

Example 5.12 Find the approximate value of
L
[ = J‘ sinx

0 X

using (i) mid-point rule and (ii) two-point open type rule.
(i) Mid-point rule. We have h = [(b — a)2] = 172 Therefore, x, = 0, x; = 1/2 and x; = 1.

1
I = J.Of(X) dx = 2hf(x0 + h) = f(_;—):ZSIn(—}Z—) = 09589

(ii) Two-point rule. We have h=1[b-
ool ) = [(b — a)/3] = 1/3. Therefore, x, = 0, x; = 13, % = 9/3 and

1
e _ 3h
_ _[Of(x) dx = £ [f(xy + B) + fxy + 2h)]
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. [ (1 2
(5)43)
L \3 f 3

Ligan(1).3 . (2
=13 4 22|
Al sm(3)+2sm(3ﬂ = 0.9546.

gxample 5.13 Find the remainder of the Simpson three- -eighth rule

1
2

j f@) dx = [f(xo) +3£(0) + 3(xy) + fixy)]
for equally spaced points Xi=Xg+ih,i=1,2, 3. Use this rule to approximate the value of the integral
1
P j o
014+ x

Also, find a bound on the error,

Using (5.61) and definition 5.2, we can sho

w that the rule is exact for f@)=1,x x% % For example,
for f(x) = 1, we get

X

jxsdx =(x; - xp) = %h [8] = 3h

which is true. The error constant is given by
C=J.3,1:4dx-—%_§/i [x0+3x]+3x2 + x3]
X0

= % (G + 30)° — 2] - % [0 + 3G + 1) + 30 + 20)* + (xp + 30)"]

=L D + 155 b+ 90 B2 + 27023 1 + 405 x, K4 2431 — 2]

Chapter 5

- i:— [ + 30r) + 4xd b+ 623 W% + dxg 12 + B

+ 3(x + 8hx} + 24x3 K2 + 32x, 1® + 16K
+ (x5 + 120+ 543 1% + 108x, B3 + 81h%)]

=-{£—9—9-} W=_2
5 2 10

Therefore, the error term is given by

L ——

\'r—v—\_\

{ E=C S = - I gy =~ 38 | k<<,
E 10x24 80

We have xo = 0, x; = 1/3, x, = 2/3, x, = 1, h = 1/3. Therefore,
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= %(%) [.f(0>+3f(%)+3f (3)-50] |

pe Cnmputalion ’ [

1[.9,.2+ }—069375
8[1+4 5 2

_5.8 METHODS BASED ON UNDETERMINED COEFFICIENTS
ection can also be obtained using the approact

.rived in the previous S
_Cotes methods are given by

The Newton-Cotes methods de
he Newton-

of method of unduummcd coefficients. T

jm) dx = Z A J

d S1mpson methods using the method of undetermined coefficients. |

We shall derive the Trapezoidal an
Newton-Cotes Methods

Trapezoidal method

We have n = 1, xo—a,xl-bandh—xl
ik

J['feo dx =0 fo) + 2a S0

le can be ynade exact for poly nomials of degree upto one. For

- Xo- We write

Using (5.61) and definition 5. 2 the ru
f(x) =1 and x, we gei the systemn ol equations

f(x>=1.xl—xO=A«0+).«l,0rh=ﬂ,0+Al
f(x) =x: % (x2 = x%) = Agxp + Ay xp.

1
We have ™1 (x; — Xp) (X1 + Xp) = Agxg + Ay X,

] .
or E (ZXO + h) = A’OxO + Al(xo + h)
or L h,+h)=

) 0 ) = (A() + ll)xo + llh = hxo + A’h
or _h

)ﬂlh = 5 (.)" /\| = ?

From the first cquation I =1 —
1€ ‘ ,we get A, = h ,1 = T
S 0 hi2 he metl '
. hod becomes

1 de = 2 trp) 4 pey.

e A

From (5.69), the error constant is given by

C= lfdx——[x + ="
j 2ot %] [x3 x“]_.~ (2 + x2] /
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] 3
= 200+ 355 b+ 3y 12 4 3y - 2xy - 3x2h
=3h (5 + 2xy b + h2)]

h3
—_ ?

The truncation error becomes
C ., 3 )
Ri=S10=-L @), ne<é<n

simpson’s method

Wehaven=2,x0:a,x1=x0+h,x2=x0+2h=b,h:(b-a)/2.Wewrite

,[f () dx = Ao f(xg) + Ay fxp) + Ay fx).

The rule can be made exact for polynomials of degree upto two.
For f(x) = 1, x, X%, we get the following system of equations.

fO =lix,—xg=Qg+ A + A, or2h=4+ A, +4,  (5.81a)

£ =x: %(x%—x%):lox0+llx] + Ay x (5.81b)

) =2 %(x% —x3) = Agx3 + A x2 + A2, (5.81 ¢)

From (5.81 ), we get

%(x2  xg) Oy + Xg) = Ao xp + A(xg + B) + Ay(xg + 20)

Chapter 5

or %(2}:) Qg + 20) = (Ao + A + D) xg + (A, + 24k
=2h xy + (A, + 24,k using (5.81 a)
or 2h = )l’l + 2212 (5.81d)
From (5.81 ), we get ’ '
-;T [(x?,+6x%h+ l2x0h2+ 8h3)—x30] :on% + A, (X%+Zx0h + B
‘ + (% + dxoh + 4h%)
or 22 h4dxg 2+ S R =g+ Ay + Ax3 + 24, + 20)x0 h 2
0h +4x 3 =W+ AL+ Ay 1 DXk + (A + 44,)h

=2h x5 + dxg I® + (A, + 4A,)K°
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or % h=a +A42s

Solving (5.81d), (5.81¢) and using (5.81 a), we obtain Ao = M3 A, =43, Az = hi3,
The method is given by |

[y ax = ”3" o + A + ek

From (5.76), the error constant is given by
5

C=- M:——ills
T 120 15
5
_ C i = _’L»- i"('] ), x, < N <X
and TR T JAm

The method of undetermined coefficients can be used to de;ive quadrature_ﬁoxmu]as of a given type,

We illustrate such derivations through the following examples.

Example 5.14 Determine a. and ¢ such that the formula

J‘hf("’) dx = h {af(()) + bf(—g) + cf(h)}

0
ible, and determine the order of the truncation error.

(Uppsala Univ., Sweden, BIT 13(1973), 123)

Making the method exact for polynomials of degree upto 2, We obtain

s exact for polynomials of as high order as posS

for f(x) =1: h=h(a+b+c),ora+b+c=1.

2
for f(x) =x: -]l—=h(—llll+ch), or —1—b+c:—]—.
2 3 3 y)

3 2
for f(x) =x" —h—=h(éﬁ—+ch2), or lb+ c=l.
3 9 9 3

Solving the above equations, we get
a=0, b=23/4 and c=1/4.

The truncation error of the formula is given by

C Y4
1B S &), 0<E<h

’ d h 3 4
an C=J0x3dx_h[sz7+Ch3i|=—h—.
36
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Hence, we have

14
TE = - B
206 17 = o).

Example 5.15 Find the quadrature formula

. dx
J-“f(.\)j“zl':r = =0 f(()) t+ o, f( J + (Z3f(l)

which is exact for polynomials of highest possible degree. Then use the formula on

J‘(: dx3

X—Xx

and compare with the exact value.

(Oslo Univ., Norway, BIT 7(1967), 170)

Making the method exact for polynomials of degree upto 2, we obtain

for f(x)=1: II=J'OT(1\/+T)=Q'+%+%
. _ x dx 1
flx) = x: Iz_jmzi + oy

I 24
for f(x):xz; L, = _X_X—=l
’ -[oJx(l—x) g 2T

where

| .
I = __,.(b_= 1
M x(1= ) - 2x— J(‘ sin ],

]2=J' X dx 1 X dx J'l r+1
2

Oyax(l-x) OVI-(2x-1) 291 =12 B

— lJ.l t{h +._l_ ¥ dt =£
Ix 1lr
L= [ dx o X« b+ 1)
[ - e
100 1t 1l
=] ——=—==dt+= dr+— [ —dt__
4)a 1o 200 [1_p2 4L N2
= 3T
"
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Hen i
ce, we have the equations

ocl+oc3+(x;=ﬂ

1 L

7%t RT 2

1 r

-—Ot-.+051-‘

& 8
rl2,

which gives
The quadrature formula is given by
L fx)dx l{f(0)+2f(—l—)+f(1)]
L, a-xn 4 2

We now use this formula to evaluate

f(x) dx

. S '_,,L-—:J"/
= -[o [ — X3 - jo J1+x Jx(1=x) 0/x(1—x)
where f(x) = 1/ 1+ x .

a2 _@} ~ 2.62331.
3. 2

T
We obtain I = )

The exact/value is 1 = 2.62205755.

/ .
.1\Gaus/s/ Quadrature Methods
he thod (5.70), the nodes x’s and the weights A,’s, k= 0(1)n can also be obtained
mials of degree upto m. When the nodes are known, that is,

Newton-Cotes methods. When the nodes are also to be

(hods are called Gaussian integration methods. Since

[- 1, 1], using the transformation

In the integration me
by making the formula exact for polyno
m = n, the corresponding methods are called
determined, we have m = 2n + 1 and the me
any finite interval [a, b] can always be transformed to

b—a b+a
Xi= +

"’,2,_,__.-1/

we consider the integral in the form
1 n :
3 )
J.—IW(x) fo) dx= 3 A fy &)

k=0

where w(x) > 0, -1 £x = 1, is the weight function.
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Let the weight function be w(x) = 1. Then, the method (5.82) reduces to

1 n
» J(x) dx = kgo A F(x).

In this case, all the nodes x; and weights A

@an formula n = 0. The formula is given by

1
[ 70 ax =g s,

The method has two unknowns A, X
Fx)w=11;

Hence, the method is given by

1
J.—1 S dx =2£(0)

which is same as the mid-point formula. The error constant is given by

—

Hence,

@Two-pointformula n = 1. The formula is given by

(5.83)
« are unknown. Consider the following cases.
(5.84)
Making the method exact for f(x) = 1, x, we get
2=1
fO) =x: 0=2x)0rx=0.
(5.85)
1
- 2 _ 2
C = _[_]x dx ~2(0] = 2.
, JPSU [O
Ri== & =1 10, -1<£<1
2! 3 ’ '
1
[, £00 dx =g fxo) + 2y flx. (5.86)

The method has four unknowns, xg, x;, A4y and A;. Making the method exact for fx) =1, x, 2%, %,

we get
< f) =1
flo) =x
flx) =+
fx) =x

Eliminating A, from (5.87 b), (5.87 d ), we get

2=1+ A (5.87 a)
3 = dox+ hy (5.87¢)
0 =2 x5+ A . (5.87 d)

ll .l”; = )'l xl x% =0, or )ul' xl (xl . xO) (xl + xo) = 0.
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Note that if x; = 0. then from (5.87 b
» We

Since A‘l * 0, Xp ¥ X, WE getx) + X = Qorx; =~ Xp-
get x, = O since Ay # 0. Therefore, x, # 0-
Substituting in (5.87 b), we get Ag - 2, =0, o0r 2 = Are

Substituting in (5.87 a), we gel =4 = 1.

Using (5.87 ¢), we get "% 1B orx=% 1/\5' and X, = F 1/\/.?. Therefore, the twWo-point Gaugs.
Legendre method is given by }

} f_llf(.r) c;-=.f(——\}7)+f(‘zL;)- ’ » (5.88)

-

The error constant is given by
1 4 I +—l- =—?:——-;=-§—‘.
(‘.—:J'_I.r dx — 99 5 9 45
The error term Ry becomes
1 (4) 3
RJ=%f‘”(§)='ﬁ;f &, -1<6<l (5.89)

2 The method is given by

J._l]f(-l') dx = A f(x0) + A1 f(x) + A f(x2)-

ynomials of degree upto five,

G Three-point formula n =

There are six unknowns in the method and it can be made exact for pol
For f(x) = x' i =0(1)5, we get the system of equations

fo=1: Ag+h+h=2 (5.90 a)
fx)=x 1 AgXx* Ay xp+x=0 (5.90h)

(=2 Bt A x = -g— (5.900)
fm=v: ka+thn+hn=0 (5.904)
o =xt s dgxpt A a+ A= % (5.90¢)
fW=x: Agx+hx+lx=0 (5.90/)

Eliminating 4, from (5.90 b), (5.90 d) and (5.90 d), (5.90 f), we get
A‘l x](xlz-x%)) i }q 12(122 — X%,) =0

3
Mgt - 5) + A 505 -9 =0.

Eliminating the first term from these two equations, we get
2
. | o 50 - x3) = Ay xp (6% - x3) = 0
b x5 - x3) (x% - x%) = 0,
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Since xo, Xy, Xy are distinct, we get on cancelling the terms (v, — xp) and (vs - x))

A: .\'2(.\‘: + .\ln) (\: + .\") = ()-

Wwe have A, # 0 and let x; # 0. Then, we have either vy = — x, or v, = — x. Let &y = = xo. Then,
from (5.90 b), (5.90 d), we get : -

(A() = /13).\’“ + /11 Xy o= 0
()\() - A:).\"(‘) + Al .\'i‘ = 0.

s : i . 2 2 < ig
Eliminating the first term, we get /11.\‘1 (v = xy) = 0. Since, A =0, x; # Xo» X} # — X, (otherwise
x| = Xp), we get x| = 0.

Hence, (Ag — 4,) xy = 0, or Ay = A, since Xy # 0.
Now, (5.90 ¢), (5.90 ) give

2)'0 x:()-) = , 210 \é =

w [
o

Dividing, we get x3 = 3/5, or x, = + /3/5. Then X, = F Af3/5.

Now, 4, x% = 1/3 gives A, = 5/9 and A = Ay = 5/9. From (5.90q), we get 4, =2 - 24, = 8/9.
Therefore, the three-point Gauss-Legendre method is given by

P

Yipeks Livmali| sl [B {3 :
J'_lf(.x) dx = Q[Sf( \/;)+Sf(0)+5_f(\!?j‘:l“ | (5.91)

B
If we take x, = — x|, then we get x, = 0 and x, = + /375 giving the same method. The nodes are
symmetrically placed about x = 0.

The error constant is given by

B—

e ———

The error in the method becomes

N

C 6,8 _ 8 (6) 1 ©6) 5

Ry = — = — () = —— ,—l< &<
= IO = s IO = 1o FOG - 1<

In the later part of this section, we shall prove that the abscissas of the above formulas are the Zeros

of the Legendre polynomials of the corr esponding order. Hence, they are called the Gauss-Legendre
quadrature methods )
~drature methods

The nodes and the corresponding weights for the Gauss-Legendre integration method (5.83) for
7= 1(1)5 are given in Table 5.3. T e
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Nodes and Weights for Gauss-Legendre Integration Method (5.83).

sl w\\'(__"r'}l;‘rlrlv!j\'_ Ty
| .()()()()U(m()()()

Table 5.3

e nodes Xy e——

e —————

;tO.ST]_%SOZ(\‘)Z

().0000000000
11:0.7745‘)(!()(1‘)2
+0.339081 0436
1+0.861 1363116

().8888338880

0.6521451 549
0.347854t§~|5|
(),5()8888888‘)

3
0.0000000000
4 1£0.5384693101 04786286705
+0.9061798459 0.2369268851
+0.2386191801 0.4679139346
5 +0.6612093865 0.3607615730
1+0.9324695142 0.1713244924

gxample 5.16 Evaluate the integral
[ = J‘1 dx
01+ X

oint formula.

using Gauss-Legendre three-p
0, 1] to the interval [-

First we transform the interval [ 1, 1]. Let t = ax +b. We have

—1=b, l=a+Db
or a, =2 b=——1,andt=2x—1.
I dx U odt
J=| —= —_—
-[ol+x J—1r+3
Using Gauss-Legendre wpnintmle (corresponding 10 7 = 2), we get ,
1H 1 ) %/( 1 1
[==|8| == % 5 —=—=
9’80+3 3+43/5 3—,/3/5)
_131 _
189 = 0.693122.

The exact solution is I = In2 = 0.693147.

2
nt and

Example 5.17 Evaluate the integral I = .
integral / = _[ using the.Gauss-Legendre 1-point, 2—1)0i

] L1+x
3-point quadrature rules. Compare with the exact solution

I =tan™ (4) - (n/4).

4
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To use the Gauss-Legendre rules, the interval [1, 2] is to be reduced to [-1, 1]. Writing x = at + b,

we gCt

1=—a+b, 2=ia+

b

whése solution is b = 3/2, a = 1/2. Therefore, x = (1 + 32, dx = di/2 and

Using the 1-point rule, we get

Using the 2-point rule, we get

Using the 3-point rule, we get

The exact solution is J = 0.5404,

Y Matian Ol alaco 1 -

_ [ 8(r+3)ar
I‘L[\‘

16+(1+3)"]

I=2f£0) = 2{ 24

16+81 |

A

’_]] Fydt.

0.4948.

0.3842 + 0.1592 = 0.5434.

=3[ rsrorso( 2

O =

[5(0.4393) + 8(0.2474) + 5(0.1379)] = 0.5406.
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As the order of the integration method (5.60) is increased, the order of the derivative in the error term
associated with the method, also increases. For any method to produce meaningful results, these higher
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order derivatives must. remain C()lllilllllt)llH i!l (he interval of interest. Also, Newton-Cotes type methods
of higher order sometimes pl:()(lllCC (hvcrgmg results. An alternative to obtain aceurate results, while
using lower order “10“10(_“ is the use of composite integration methods. We subdivide the given
aterval [@5 b] or |- 1, ] into a number of subintervals and evaluate the integral in cach subinterval

a particular method.

by
trapezoidal Rule

We divide the interval [a, b] into N subintervals, cach of length it = (b — a)/N. We denote the
qubintervals as  (xo, -\'I|), (X, X)), oy (Wy_p Xy) where xy = a, xy = b and x; = x, + il
= 1(HN = 1. We write

b
=] f(x) dx

X b iy .
= J lf(-\') dx + J. F) dy e J- " [(x) d. (5.141)
Xo Xy Ny-1
Evaluating each of the integrals on the right hand side of (5.141) by the trapezoidal rule (5.73), we
get

1=g ((fo+SD) + U+ )+ +fy_r +IW)]

= 2o+ 2fi+ o+ +hyo) + ] (5.142)

where f, = £ (x,), k = O(1)N. The formula (5.142) is called the composite trapezoidal rule. The error
in the iritegration method (5.142) becomes

3
iy == % /&) + (&) + -+ [7(Ew)] (L9

Chapter 5

where x;_, < & <x,i=1,2, -, N.
If f”(x) is constant for all x in [a, b] or if

7)) = max 1f7(), a<n<b

asxsbh

we may write (5.143) as

3
R <22

Since h = (b — a)/N, we have

’ (17—(1)3 "’ b - 2 po \
- |R)] < Nz W= ()12”) h™ £ (). v (5.144)

The factor N in the denominator in the error term (5.144) reduces the error considerably for large N.
The number of intervals may be odd or even in this case.
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Simpson's Rule
Ntery,

ln using the Simpson's rule of integration (5.75), we need three

la, b] into an even number of subintervals of equal lcnglhﬁgiyi_n.g'uinmogld number of absc’is—smal
divide the interval [a, b] into 2N subintervals each of ]cnglh_ﬂj__(b - a)/(2N), then VmN We
ADSCISSAS Ny, Npy 00 Naye N = @y gy = By G = X ih,i=1,2, -, 2N — 1. We write *l

| = j ,I"/'(,r) dx = j L0 dx + J' "F) dx + o

abscissas. We divide the ]

b S0 d (5.145)

2N -2

Evaluating cach of the integrals on the right hand side of (5.145) by the Simpson’s rule (5.75), we

get
L= BNy v A+ 1) 4 Sy Ay )+ U+ Ao 1+ o)

=% (o + 40T, 4 fy + oo+ fop) + 20f + fa + o + fono2) + fon] 1 /(5:146)

The formula (5.146) is called the composite Simpson’s rule. The error in the integration method
bl

(5.146) becomes

h3. i iv iv
Ry == o5 [f"E) + /") + -+ [7En] (5.147)
where Xy _, < & <Xy, i=1,72, o N
Using
Fap) = max 1fY@l, a<n<b
asxsbh
we can write (5.147) in the form
5
NI® iy (b—a)”
Ry £+ = —
[Rs| < T~ £ = SegayT £70D
(b—a) 4 v 4
=2 B . 5.148
180 " G (5.148)
Similarly, composite rules in other cases may be obtained.
Example 5.26 Evaluate the integral
[ = J" dx
01+ x
subintervals.

using (i) composite trapezoidal rule, (ii) composite Simpson’s rule, with 2, 4 and 8 equal
1/2 and three nodes, 0, 1/2 and 1. Let I and I represent the valus

When N = 2, we have & =
al rule and Simpson’s rule respectively. We have two subintervals for

obtained by using the trapezoid
trapezoidal rule and only one interval for Simpson’s rule.
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we have i
| .
=30 d)om]-L{iod 1)
= 0.708333.
1 1 1.1 8§ . 1)_25
I = —| fO)+4f| = |+ f()|==|1+=+—= |==
* 6[f() f(z] f()_ 6( 3 2) 36
= 0.694444.

When N = 4, we have h = 1/4 and five nodes 0, 1/4, 2/4, 3/4 and 1. We have four subintervals for
trapezoidal rule and two subintervals for Simpson’s rule. We get

Iy = %{f(om(.f(j)“‘ 3)is D”‘“)J

= 0.697024.
Jeas(2)o o)

[f(0)+4f( J+24(
= 0.693254.

When N = 8 we have h = 1/8 and nine nodes 0, 1/8, 2/8, ---, 1. We have cight subintervals for

trapezoidal rule and four subintervals for Simpson’s rule. We get

I = 16[ ZZf( )+f1)]

=0.694122. S

_;lz[ﬂomi 7(2 )+22 (Z )+f(1)}

= 0.693155.
The exact value of the integral is / = 0.693147.
Example 5.27 Evaluate the integral
U dx
01+ x
by Subdmdmo the interval [0, 1] into two equal parts and then applying the Gauss- -Legendre three-

[roa=1 [f( 2 )+8f(0)+5f[\f J]

U dr _J-IIde+I dx
0 1+x dn2l+x

o [ —

Chapter 5

Ji=

We write

=1 + 1,
0]+ x . 2
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3 in the first and second integrals respectively, change

The transformations ¢ = 4x — 1 and y = 4x —
the limits of integration to [-1, 1]. Thus we have

Ilz+5 jll% =ht il

Evaluating each of the integrals I; and I, by the Gauss-Legendre three-point formula, we get

1[5
;=1 = 0.405464.
L= 9|5-435 5 5+,/3/ ]
[ 8, 5
e 8, 2 | =0287682
&= ml ,/ T \/3/5]
Therefore,
1 = Il + 12

= 0.405464 + 0.287682 = 0.693146.

The exact value of I is 0.693147.

5.10 ROMBERG INTEGRATION

5.4, applied to the integration methods, is
series expansion of the error term in the
erms in the error expansion by using the
f higher order than the previous methods.

Richardson’s extrapolation procedure described in section
called Romberg integration. First, we find the power
integration method. Then, by eliminating the leading t
computed results, we obtain new methods which are o

Consider the integral

1= j F(x) dx. (5.149)
The errors in the composite trapezoidal rule (5.142) and the composite Slmpson s rule (5.146) can be
obtained as
[T=Ir+ ¢ W+ cy it +cy b+ (5.150)
f [=Ig+dy B+ dy S +dy 1° + (5.151)
where ¢’s and d’s are constants 1ndependent of h.
The extrapolation procedure for the trapezoidal rule as given by (5.52) becomes
m y(m=1) _ q(m=1)
AT WD I W,y g, GISD

1 (h
r = 4m -1
The extrapolation procedure for the Simpson’s rule becomes

m+1 y(m-1) (m-1) .
o gy < TGO ETB g, 6O
4m+1 1
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Example 5.28 Find the approximate value of the integral

/= J" dx
0]+ x

using (i) composite trapezoidal rule with 2, 3, 5, 9 nodes and Romberg intcgralion,.(ii) comp(?sue
Simpson’s rule with 3, 5, 9 nodes and Romberg integration. Obtain the number of function evaluatl.ons
required to get an accuracy of 107® when the integral is evaluated directly by using the trlapezmdal

and Simpson’s rules.
Using the composite trapezoidal rule

b ‘ N-I
1=jf<x> dx = g[mzz fs+f~J
a i=1
where xy = a, xy = b, h = (b - a)/N, X; = xy + ih, we get

N=1,h=1,1I,= % Lfy + ;1 = 0.750000.

N=2h= % I = % [fy + 2f, + f,] = 0.708333.
N=d h= %, Iy = l;-[fo + 2, + 26, + 2f; + f;] = 0.697024.
1 h .
N=8,h=—,I,=— +2 -+ = 0.694122.
RN AP A
Using Romberg integration we obtain the results as given in Table 5.8,
Table 5.8 Trapezoidal Rule with Romberg Integration
h Second order Fourth order Sixth order Eightﬁ order
method method method method
1 0.750000 |
0.694444
172 0.708333 - 0.693175
. 0.693254 0.693148
1/4 0.697024 - 0.693148
0.693155 ’
1/8 0.694122

Since the exact solution is 0.693147, we require only nine function evaluations using trapezoidal rule
with Romberg integration to achieve the accuracy of 105,

The error in the trapezoidal rule is given by

2.
Ry = £1@), 0<é<t.
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Since f(0) = (1 + 0, for0Osx= 1, (1/4)= | f”(x)l < 2. Therefore, we have

2 2 " } 2
h By s A
a8 12 6
For achieving accuracy of 10 ", we require
NPT
A8

which gives & = 0.007.

Hence, we require at least (1 = 0)/0.007 = 145 function evaluations to achieve this accuracy if
trapezordal rule is used directly.

Similarly, using the composite Simpson’s rule

I = _[h f(x) dx
h o '
=3 fu+4.§| fricy +2 2:' fai + fan
Xg =0, x5y =b, h = h:;\’” , we get
N=1h-= —;—: I = % (f, + 4f, + f2) = 0.694444.
N=2h= 4l: I = % Uy + 3, + f) + 2fs + fi] = 0.693254.
N=4 h= % I = -’3‘- Uy + 4 + £ + S5 + )

+2(fr + fi + f) + f5] = 0.693155.

Using Romberg integration, we obtain the results as given in Table 5.9.

Table 5.9 Simpson's Rule with Romberg Integration

h “Fourth order Sixth order Eighth order
method ) method method
12 0.694444
0.693175
174 0.693254 0.693148
0.693148
178 0.693155 A

In this case also, we require nine function evaluations to achieve the required accuracy. Also, when
Simpson’s rule is applied directly, we have for 0 € x < 1, (3/4) < 1)l < 24 and therefore
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3t _on? - 4
—x< IFEN < == pt,
720 ~180 7 W' =150 !

For getting an accuracy ot 107°% we must have

3]14 -6 -
<107°% or h = 0.1245

720

= 9 function evaluations.

which gives at least (1 — 0)/0.1245
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